Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2026
-
Background Wolbachia bacteria of arthropods are at the forefront of basic and translational research on multipartite host-symbiont-pathogen interactions. These vertically transmitted microbes are the most widespread endosymbionts on the planet due to factors including host reproductive manipulation and fitness benefits. Importantly, some strains of Wolbachia can inhibit viral pathogenesis within and between arthropod hosts. Mosquitoes carrying the wMel Wolbachia strain of Drosophila melanogaster have a greatly reduced capacity to spread viruses like dengue and Zika to humans. While significant research efforts have focused on viruses, relatively little attention has been given to Wolbachia-fungal interactions despite the ubiquity of fungal entomopathogens in nature. Results Here, we demonstrate that Wolbachia increase the longevity of their Drosophila melanogaster hosts when challenged with a spectrum of yeast and filamentous fungal pathogens. We find that this pattern can vary based on host genotype, sex, and fungal species. Further, Wolbachia correlates with higher fertility and reduced pathogen titers during initial fungal infection, indicating a significant fitness benefit. Finally, RNA sequencing results show altered expression of many immune and stress response genes in the context of Wolbachia and fungal infection, suggesting host immunity may be involved in the mechanism. Conclusions This study demonstrates Wolbachia’s protective role in diverse fungal pathogen interactions and determines that the phenotype is broad, but with several variables that influence both the presence and strength of the phenotype. It also is a critical step forward to understanding how symbionts can protect their hosts from a variety of pathogens.more » « lessFree, publicly-accessible full text available December 1, 2026
-
The α/β-hydrolase fold superfamily includes esterases and hydroxynitrile lyases which, despite catalyzing different reactions, share a Ser–His–Asp catalytic triad. We report a 1.99 Å resolution crystal structure of HNL6V, an engineered variant of hydroxynitrile lyase fromHevea brasiliensis(HbHNL) containing seven amino-acid substitutions (T11G, E79H, C81L, H103V, N104A, G176S and K236M). The structure reveals that HNL6V maintains the characteristic α/β-hydrolase fold while exhibiting systematic shifts in backbone and catalytic atom positions. Compared with wild-typeHbHNL, the Cαpositions in HNL6V differ by a mean of 0.2 ± 0.1 Å, representing a statistically significant displacement. Importantly, the catalytic triad and oxyanion-hole atoms have moved 0.2–0.8 Å closer to their corresponding positions in SABP2, although they remain 0.3–1.1 Å from fully achieving the configuration of SABP2. The substitutions also increase local flexibility, particularly in the lid domain covering the active site. This structural characterization demonstrates that targeted amino-acid substitutions can systematically shift catalytic geometries towards those of evolutionarily related enzymes.more » « lessFree, publicly-accessible full text available September 1, 2026
-
Hydroxynitrile lyase fromHevea brasiliensis(HbHNL) and the esterase SABP2 fromNicotiana tabacumshare the α/β-hydrolase fold, a Ser–His–Asp catalytic triad and 44% sequence identity, yet catalyze different reactions. Prior studies showed that three active-site substitutions inHbHNL conferred weak esterase activity. To investigate how regions beyond the active site influence catalytic efficiency and active-site geometry, we engineeredHbHNL variants with increasing numbers of substitutions to match SABP2. Variant HNL16 has all amino acids within 6.5 Å of the active site identical to SABP2, HNL40 those within 10 Å and HNL71 those within 14 Å. HNL16 exhibited poor esterase activity, whereas both HNL40 and HNL71 showed efficient esterase catalysis, demonstrating that residues beyond the immediate active site are critical for functional conversion. X-ray structures of HNL40 and HNL71 reveal a progressive shift in backbone positions toward those of SABP2, with r.m.s.d. values of 0.51 Å (HNL40) and 0.41 Å (HNL71) over the Cαatoms, and even smaller r.m.s.d.s within the active-site region. Both HNL40 and HNL71 show a restored oxyanion hole and an additional tunnel connecting the active site to the protein surface. This work demonstrates the essential role of distant, indirectly acting residues to catalysis in α/β-hydrolase enzymes.more » « lessFree, publicly-accessible full text available September 1, 2026
-
Free, publicly-accessible full text available March 26, 2026
-
We study all the ways that a given convex body in d dimensions can break into countably many pieces that move away from each other rigidly at constant velocity, with no rotation or shearing. The initial velocity field is locally constant a.e., but may be continuous and/or fail to be integrable. For any choice of mass-velocity pairs for the pieces, such a motion can be generated by the gradient of a convex potential that is affine on each piece. We classify such potentials in terms of a countable version of a theorem of Alexandrov for convex polytopes, and prove a stability theorem. For bounded velocities, there is a bijection between the mass-velocity data and optimal transport flows (Wasserstein geodesics) that are locally incompressible. Given any rigidly breaking velocity field that is the gradient of a continuous potential, the convexity of the potential is established under any of several conditions, such as the velocity field being continuous, the potential being semiconvex, the mass measure generated by a convexified transport potential being absolutely continuous, or there being a finite number of pieces. Also we describe a number of curious and paradoxical examples having fractal structure.more » « less
-
Free, publicly-accessible full text available February 1, 2026
-
Abstract. The dry-snow zone is the largest region of the Greenland Ice Sheet, yet temporally and spatially dense observations of surface accumulation and surface roughness in this area are lacking. We use the global navigation satellite system interferometric reflectometry (GNSS-IR) technique with a novel, low-cost GNSS network of 12 stations in the vicinity of the ice sheet summit to reveal temporal and spatial patterns of accumulation of the upper snow layer. We show that individual measurements are highly precise (±2.8 cm), while the aggregate of hundreds of daily measurements across a large spatial footprint can detect millimeter-level surface changes and is biased by -2.7±3.0 cm compared to a unique validation data set that covers a similar spatial extent to the instrument sensing footprint. Using the validation data set, we find that the reflectometry technique is most sensitive to the surrounding 4–20 m of the surface, with the GNSS antenna at a height of 1–2 m above ground level. Along with an exceptionally high accumulation rate at the beginning of the study, we also detect an across-slope dependence in accumulation rates at yearly timescales. For the first time, we also validate GNSS-IR sensitivity to meter-scale surface heterogeneities such as sastrugi, and we construct a time series of surface roughness evolution that suggests a seasonal pattern of heightened wintertime roughness features in this region. These surface accumulation and roughness measurements provide a novel data set for these critical variables and show a statistically significant relationship with occurrences of both high winds and precipitation events but only moderate correlations, suggesting that other processes may also contribute to accumulation and enhanced surface roughness in the interior region of Greenland.more » « less
-
Free, publicly-accessible full text available June 6, 2026
-
Free, publicly-accessible full text available May 1, 2026
An official website of the United States government
